Common Heat Treatments Performed At Quaker City Castings

Either for our own parts or as a contract heat treatment provider, Quaker City Castings performs the vast majority of the heat treatment necessary for ductile iron castings, steel castings, and stainless steel castings in-house.  We maintain significant heat treatment capabilities, and can perform heat treatment operations for a wide variety of material grades.

Annealing

Annealing is a rather generalized term. Annealing consists of heating a metal to a specific temperature and then cooling at a rate that will produce a refined microstructure, either fully or partially separating the constituents. The rate of cooling is generally slow. Annealing is most often used to soften a metal for cold working, to improve machinability, or to enhance properties like electrical conductivity.

In ferrous alloys, annealing is a heat treatment that is usually accomplished by heating the metal beyond the upper critical temperature and then cooling very slowly, resulting in the formation of pearlite. In both pure metals and many alloys that can not be heat treated, annealing is used to remove the hardness caused by cold working. The metal is heated to a temperature where recrystallization can occur, thereby repairing the defects caused by plastic deformation. In these metals, the rate of cooling will usually have little effect. Most non-ferrous alloys that are heat-treatable are also annealed to relieve the hardness of cold working. These may be slowly cooled to allow full precipitation of the constituents and produce a refined microstructure.

Ferrous alloys are usually either “full annealed” or “process annealed.” Full annealing is a heat treatment that requires very slow cooling rates, in order to form coarse pearlite. In process annealing, the cooling rate may be faster; up to, and including normalizing. The main goal of process annealing is to produce a uniform microstructure. Non-ferrous alloys are often subjected to a variety of annealing techniques, including “recrystallization annealing,” “partial annealing,” “full annealing,” and “final annealing.” Not all annealing techniques involve recrystallization, such as stress relieving.

Normalizing

Normalizing is a heat treatment technique used to provide uniformity in grain size and composition throughout an alloy. The term is often used for ferrous alloys that have been austenitized and then cooled in open air. Normalizing not only produces pearlite, but also martensite and sometimes bainite, which gives harder and stronger steel, but with less ductility for the same composition than full annealing.

Stress Relieving

Stress relieving is a technique to remove or reduce the internal stresses created in a metal. These stresses may be caused in a number of ways, ranging from cold working to non-uniform cooling. Stress relieving is usually accomplished by heating a metal below the lower critical temperature and then cooling uniformly.

Aging

Some metals are classified as precipitation hardening metals. When a precipitation hardening alloy is quenched after heat treatment, its alloying elements will be trapped in solution, resulting in a soft metal. Aging a “solutionized” metal will allow the alloying elements to diffuse through the microstructure and form intermetallic particles. These intermetallic particles will nucleate and fall out of solution and act as a reinforcing phase, thereby increasing the strength of the alloy. Alloys may age “naturally” meaning that the precipitates form at room temperature, or they may age “artificially” when precipitates only form at elevated temperatures. In some applications, naturally aging alloys may be stored in a freezer to prevent hardening until after further operations – assembly of rivets, for example, may be easier with a softer part.

Examples of precipitation hardening alloys include 2000 series, 6000 series, and 7000 series aluminium alloy, as well as some superalloys and some stainless steels. Steels that harden by aging are typically referred to as maraging steels, from a combination of the term “martensite aging.”

Quenching

Quenching is a process of cooling a metal at a rapid rate immediately after heat treatment. This is most often done to produce a martensite transformation. In ferrous alloys, this will often produce a harder metal, while non-ferrous alloys will usually become softer than normal.

To harden by quenching, a metal (usually steel or cast iron) must be heated above the upper critical temperature and then quickly cooled. Depending on the alloy and other considerations (such as concern for maximum hardness vs. cracking and distortion), cooling may be done with forced air or other gases, (such as nitrogen). Liquids may be used, due to their better thermal conductivity, such as oil, water, a polymer dissolved in water, or a brine. Upon being rapidly cooled, a portion of austenite (dependent on alloy composition) will transform to martensite, a hard, brittle crystalline structure. The quenched hardness of a metal depends on its chemical composition and quenching method. Cooling speeds, from fastest to slowest, go from fresh water, brine, polymer (i.e. mixtures of water + glycol polymers), oil, and forced air. However, quenching a certain steel too fast can result in cracking, which is why high-tensile steels such as AISI 4140 should be quenched in oil, tool steels such as ISO 1.2767 or H13 hot work tool steel should be quenched in forced air, and low alloy or medium-tensile steels such as XK1320 or AISI 1040 should be quenched in brine.

However, most non-ferrous metals, like alloys of copper, aluminum, or nickel, and some high alloy steels such as austenitic stainless steel (304, 316), produce an opposite effect when these are quenched: they soften. Austenitic stainless steels must be quenched to become fully corrosion resistant, as they work-harden significantly.

Tempering

Untempered martensitic steel, while very hard, is too brittle to be useful for most applications. A method for alleviating this problem is a heat treatment called tempering. Most applications require that quenched parts be tempered. Tempering consists of heating steel below the lower critical temperature, (often from 400 to 1105 ˚F or 205 to 595 ˚C, depending on the desired results), to impart some toughness. Higher tempering temperatures (may be up to 1,300 ˚F or 700 ˚C, depending on the alloy and application) are sometimes used to impart further ductility, although some yield strength is lost.

Tempering may also be performed on normalized steels. Other methods of tempering consist of quenching to a specific temperature, which is above the martensite start temperature, and then holding it there until pure bainite can form or internal stresses can be relieved. These include austempering and martempering.